Synthesis and Structure of N-Substituted Aryl(hetaryl)spiropyrrolidones

E. S. Ostroglyadov^a, O. V. Komarova^b, O. S. Vasil'eva^a, N. V. Gorodnicheva^a, and V. M. Berestovitskaya^a

^a Herzen State Pedagogical University of Russia, nab. r. Moiki, St. Petersburg, 191186 Russia e-mail: kohrgpu@yandex.ru

^b Katanov Khakassia State University, Abakan, Russia

Received June 6, 2014

Abstract—4,4'-Diaryl-3,3'-spirobi[2-pyrrolidones] were synthesized by hydrogenation of *N*-substituted 3-methoxycarbonyl-3-(2-nitro-1-arylethyl)-4-phenyl-2-pyrrolidones followed by intramolecular heterocyclization. Structure of the compounds obtained was determined by IR, ¹H, and COSY NMR spectroscopy.

Keywords: 2-pyrrolidone, spirobi[2-pyrrolidone], catalytic hydrogenation, heterocyclization

DOI: 10.1134/S1070363214100144

Spiro-fused heterocycles containing lactam ring are of particular interest, as many of them contain pharmacophore groups. For example, spiroheterocycles are components of antihypertensive agents (irbesartan), antihistamines, and anti-inflammatory drugs (fenspiride), antihypertensive and cardioprotective agents (spirapril), etc. [1]. 2-Pyrrolidone-containing medications are widely used [2]. They include nootropic agent *N*-carbamoylmethyl-2-pyrrolidinone (piracetam), a phenyl analog Carphedon [3, 4], which has antihypertensive and nootropic activity, and polyvinylpyrrolidones, used as blood plasma expanders (Gemodez, Enterodesum, Neogemodez) [1].

A convenient approach to the synthesis of 3,3-spiropyrrolidones is based on electrolytic reduction of nitroethylpyrrolidonecarboxylates [5].

Further developing our previous studies on the synthesis of spiropyrrolidones [5–8], we performed hydrogenation of individual diastereomers of nitroethylpyrrolidonecarboxylates **I–V** in the presence of Raney nickel catalyst at atmospheric pressure and at a temperature of 18–20°C. The starting materials **I–V** have been obtained previously by condensation of 1-[1-aryl(hetaryl)-2,2-dimethoxycarbonylethyl]-3-methoxycarbonyl-4-phenyl-2-pyrrolidones with aryl(hetaryl)nitroethenes [6, 7].

Reduction of I–V was accompanied by intramolecular acylation of the initially formed amino group and led to the formation of new diastereohomogeneous 4,4'-diaryl-1-[2,2-dimethoxycarbonyl-1-aryl(pyridyl-3)ethyl]-3,3'-spirobi[2-pyrrolidones] VI–X in good to excellent yields (68–96%) (Scheme 1).

Scheme 1.

 $R = C_6H_5$: $R^1 = C_6H_5$ (**I**, **VI**), 4-MeC₆H₄ (**II**, **VII**); R = 4-ClC₆H₄: $R^1 = C_6H_5$ (**III**, **VIII**), 4-ClC₆H₄ (**IV**, **IX**); R = pyridyl-3, $R^1 = 4$ -MeC₆H₄ (**V**, **X**).

Parameters of IR and	¹ H NMR spectra	of compounds VI–X
----------------------	----------------------------	-------------------

Comp.	v, cm ⁻¹ (CHCl ₃)		ICl ₃)	δ, ppm						J, Hz	
	NH	С=О	CO ₂ Me	Ar (Py) [Me]	C ⁵ H'H" (C ^{5'} H'H")	C ⁴ H (C ⁴ 'H)	H _A	H_{B}	NH	Me	$J_{ m AB}$
VI	3430	1700	1750	7.03–7.41	3.05, 3.77 (3.14, 3.38)	3.11 (4.55)	5.94	4.69	5.37	3.59 3.91	12.21
VII	3430	1700	1750	7.02–7.34 [2.38]	3.00, 3.77 (3.11, 3.35)	3.11 (4.56)	5.90	4.68	5.40	3.55 3.88	12.21
VIII	3400	1695	1750	7.05–7.40	3.06, 3.80 (3.12, 3.36)	3.10 (4.54)	5.88	4.67	5.46	3.60 3.88	12.21
IX	3400	1695	1750	7.00–7.35	3.06, 3.78 (3.14, 3.34)	3.11 (4.56)	5.71	4.59	5.40	3.57 3.85	12.21
X	3445	1700	1750	7.03–7.25 (8.70, 8.84) [2.38]	3.02, 4.00 (3.39, 3.49)	3.36 (4.64)	5.71	4.63	5.46	3.60 3.77	12.21

The obtained compounds **VI–X** were stable colorless crystalline solids. Their structure was confirmed by IR and ¹H NMR spectroscopy methods (see the table).

In the IR spectra of 3,3'-spirobi[2-pyrrolidones] **VI–X** there are strong absorption of the ester (1750 cm⁻¹) and lactam (1695–1700 cm⁻¹) carbonyl groups (see Table). The ¹H NMR spectra of these compounds contain one set of the proton signals that confirms the diastereo-homogeneity of the compounds obtained. For example, in the spectrum of **VI** the methine protons H_A and H_B appear as doublet signals at 5.94 and 4.69 ppm. The multiplets at 3.11 and 4.55 ppm correspond to the protons C⁴H and C⁴H of the pyrrolidone rings. The methylene protons resonate at 3.05 and 3.77 ppm (C⁵H₂), 3.14 and 3.38 ppm (C⁵H₂) (Fig. 1).

The validity of the signal assignment of methine and methylene protons in the spectra of **VI–X** was confirmed by 2D NMR spectroscopy [9–11]. In the COSY spectrum (Fig. 2) of **VI** there is correlation between the protons of unsubstituted [NH (5.37 ppm) and C^{5'}H" (3.38 ppm), C^{5'}H" (3.38 ppm) and C^{5'}H' (3.14 ppm), C^{5'}H" (3.38 ppm) and C^{4'}H (4.55 ppm)] and *N*-substituted [C⁵H" (3.77 ppm) and C⁴H (3.11 ppm), C⁵H' (3.05 ppm) and C⁴H (3.11 ppm)] pyrrolidone rings (Scheme 2).

In summary, catalytic hydrogenation of *N*-dimethoxycarbonylethyl-3-nitroethyl-substituted pyrrolidonecarboxylates afforded new *N*-dimethoxycar-

bonylethyl-3,3'-spiropyrrolidones. The latter are of interest as potentially biologically active compounds, and are valuable precursors for the synthesis of new derivatives of γ -aminobutyric acid and piracetam spiroanalogs.

EXPERIMENTAL

The ¹H and ¹H-¹H COSY NMR spectra were recorded on a Jeol ECX400A spectrometer (399.78 MHz) in chloroform-*d*₁ relative to the residual proton signal of the solvent. The IR spectra were obtained on a Shimadzu IRPrestige-21 FTIR spectrometer in chloroform (40 mg mL⁻¹). Elemental analysis was performed on a EuroVector EA 3000 analyzer (CHN Dual mode). Melting points were determined on a PTP (M) instrument.

Compounds I–V were obtained as described in [7].

4,4'-Diphenyl-1-[2,2-dimethoxycarbonyl-1-phenylethyl]-3,3'-spirobi[2-pyrrolidone] (VI). A suspen-

Scheme 2.

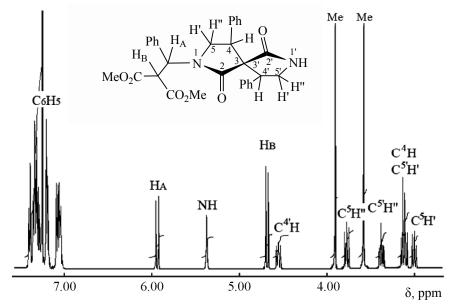


Fig. 1. ¹H NMR spectrum of compound VI in CDCl₃.

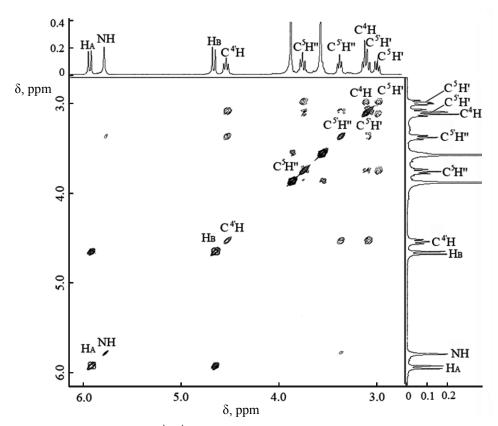


Fig. 2. Fragment of ¹H-¹H COSY NMR spectrum of compound VI in CDCl₃.

sion of 1.2 g of Raney nickel in 7 mL of methanol was saturated with electrochemically generated hydrogen. Then, to the reaction mixture was added 1.86 g (0.003 mol) of 1-(2,2-dimethoxycarbonyl-1-phenylethyl)-3-

methoxycarbonyl-3-(2-nitro-1-phenylethyl)-4-phenyl-2-pyrrolidone **I** in a mixture of 50 mL of methanol and 5 mL of acetone, and the mixture was hydrogenated until the calculated amount of hydrogen was consumed

[0.202 L (0.009 mol)]. The catalyst was separated and washed on a filter with boiling ethanol (3 \times 100 mL). The filtrate was evaporated under reduced pressure (15–20 mmHg) to 2/3 of the original volume. The precipitated crystalline product was filtered off. Yield 1.45 g (87%), mp 100–102°C (methanol). Found, %: C 70.21; H 5.60; N 4.98. $C_{31}H_{31}N_2O_6$. Calculated, %: C 70.59; H 5.88; N 5.31.

Compounds VII–X were prepared similarly.

- **4'-(4-Methylphenyl)-4-phenyl-1-[2,2-dimethoxy-carbonyl-1-phenylethyl]-3,3'-spirobi[2-pyrrolidone] (VII).** Yield 2.00 g (96%), mp 87–89°C (methanol). Found N, %: 4.70. C₃₂H₃₂N₂O₆. Calculated N, %: 5.19.
- **4,4'-Diphenyl-1-[2,2-dimethoxycarbonyl-1-(4-chlorophenyl)ethyl]-3,3'-spirobi[2-pyrrolidone] (VIII).** Yield 0.27 g (86%), mp 105–107°C (methanol). Found N, %: 5.00. C₃₁H₂₉N₂O₆. Calculated N, %: 5.33.
- 4-Phenyl-4'-(4-chlorophenyl)-1-[2,2-dimethoxy-carbonyl-1-(4-chlorophenyl)ethyl]-3,3'-spirobi[2-pyr-rolidone] (IX). Yield 0.8 g (68%), mp 88–100°C (methanol). Found N, %: 4.70. $C_{31}H_{28}N_2O_6Cl_2$. Calculated N, %: 4.71.
- 4'-(4-Methylphenyl)-4-phenyl-1-[2,2-dimethoxy-carbonyl-1-(pyridyl-3)ethyl]-3,3'-spirobi[2-pyrrolidone] (X). Yield 0.6 g (92%), mp $108-110^{\circ}$ C (Et₂O). Found N, %: 8.05. C₃₁H₃₁N₃O₆. Calculated N, %: 7.76.

¹H NMR and IR spectra were measured at the Center for Joint Use, Herzen State Pedagogical University of Russia.

ACKNOWLEDGMENTS

This work was financially supported by the Ministry of Education and Science of Russia in the

frame of the basic part of the governmental contract (20/14-PGZ).

REFERENCES

- Mashkovskii, M.D., Lekarstvennye sredstva (Drugs), Moscow: RIA "Novaya Volna," 2012.
- 2. Berestovitskaya, V.M., Vasil'eva, O.S., and Ostroglyadov, E.S., 2-Pirrolidon i ego proizvodnye (2-Pyrrolidone and Its Derivatives), St. Petersburg: Asterion, 2013.
- 3. Berestovitskaya, V.M., Zobacheva, M.M., and Vasil'eva, O.S., *Izv. RGPU im. A.I. Gertsena, Ser. Yestestv. i Tochnye Nauki*, 2002, no. 2(4), p. 133.
- 4. EA Patent no. 002380, 1999; Bull. Izobret. Evraz. Patent. Vedomstva, 2001, no. 1.
- Berestovitskaya, V.M., Litvinov, I.A., Vasil'eva, O.S., Nikonorov, A.A., Ostroglyadov, E.S., and Krivolapov, D.B., *Russ. Chem. Bull.*, 2012, vol. 61, no. 5, p. 1014. DOI: 10.1007/s11172-012-0131-5.
- Berestovitskaya, V.M., Artemova, O.V., Vasil'eva, O.S., Litvinov, I.A., Gubaidullin, A.T., Krivolapov, D.B., Ostroglyadov, E.S., and Berkova, G.A., *Russ. J. Gen. Chem.*, 2009, vol. 79, no. 4, p. 808. DOI: 10.1134/ S1070363209040227.
- Artemova, O.V., Vasil'eva, O.S., Ostroglyadov, E.S., Zobacheva, M.M., and Berestovitskaya, V.M., *Russ. J. Gen. Chem.*, 2009, vol. 79, no. 10, p. 2201. DOI: 10.1134/S107036320910020X.
- 8. Nikonorov, A.A., Ostroglyadov, E.S., and Vasil'eva, O.S., *Russ. J. Gen. Chem.*, 2011, vol. 81, no. 6, p. 1681. DOI: 10.1134/S1070363211080172.
- 9. Ernst, R.R., Bodenhausen, G., and Wokaun, A., Principles of Nuclear Magnetic Resonance in One and Two Dimensions, Oxford: Oxford University Press, 1990.
- 10. Claridge, T., Tetrahedron Org. Chem. Ser., 2009, vol. 27, p. 1.
- 11. Silverstein, R.M., Webster, F.X., and Kiemle, D., Spectrometric Identification of Organic Compounds, Wiley, 2009.